вернёмся к началу?

ТОРМОЖЕНИЕ В АТМОСФЕРЕ

До настоящего времени спускаемые аппараты для планет с атмосферой типа земной или плотнее применялись при посадке космических аппаратов на Землю и на Венеру. Хронологически спускаемые аппараты, предназначенные для посадки на планеты, имеющие атмосферу, появились раньше, чем спускаемые аппараты для безатмосферных планет. Первая посадка спускаемого аппарата на Землю осуществлена в мае 1960 г. Это был беспилотный корабль-спутник, предназначенный для отработки всех этапов полета человека в космос. Первая же посадка космического аппарата на безатмосферное тело (Луну) была осуществлена 3 февраля 1966 г. («Луна-9»).

Правда, попадание космическим аппаратом в Луну было совершено еще в 1959 г., но это произошло в отсутствие спускаемого аппарата, и удар о поверхность Луны окончился полным разрушением космического аппарата. Однако особое (объемное) расположение вымпелов позволило части из них оказаться не поврежденными.

Как уже говорилось, имеются два основных способа уменьшить скорость полета космического аппарата: использование двигательной установки, аналогичной применяемой для вывода спутника на орбиту, и торможение в атмосфере планет. Первый способ требует затрат большого количества топлива для гашения гигантской скорости, и в настоящее время для планет, обладающих атмосферой, когда, применяется химическое топливо, считается экономически не выгодным.

Торможение в атмосфере космических тел — явление в природе рядовое. Благодаря наличию атмосферы мы находим на Земле упавшие «небесные камни», называемые метеоритами. Они бывают каменные, железные и промежуточного типа. Упавшие на Землю метеориты представляют собой остатки метеороидов, летевших по своим орбитам и столкнувшихся с Землей. Прохождение через атмосферу с колоссальной начальной скоростью полета дорого обходится небесному гостю. Большая его часть оказывается расплавленной, испарившейся и рассеянной в атмосфере. Но, к счастью, не вся, иначе нам бы не пришлось находить метеориты.

Все дело в том, что выделяющаяся тепловая энергия не идет полностью на нагрев метеороида или космического аппарата (поэтому приводившиеся ранее оценки о превращении всей кинетической энергии падающего тела в тепло были преувеличены). Природа тепловой энергии такова, что она стремится с той или иной интенсивностью распространиться во все стороны. И при торможении в атмосфере тепловая энергия (причем, как правило, большая часть) передается и атмосфере.

И все же скорости движения метеороида при встрече с Землей очень велики — от 11,2 до 72 км/с. Теоретические расчеты и наблюдательные данные указывают, что при скоростях встречи более 22 км/с метеороиды полностью разрушаются в атмосфере Земли. Интересно отметить, что 30 июня 1908 г. очевидцы видели след «Тунгусского метеорита», летевшего с северо-запада на юго-восток. Следовательно, он летел под большим углом навстречу Земле, а может, и перпендикулярно ее движению. Таким образом, скорость встречи была более 30 км/с, что могло послужить причиной полного разрушения небесного тела.

Но вернемся к проблеме торможения космического аппарата. Отметим, что даже если для этого использовать его естественное торможение в атмосфере, то без двигательной установки все равно не обойтись. Свободный спуск с орбиты за счет торможения в разреженной атмосфере нельзя считать приемлемым, так как при этом возникают трудности при прогнозировании времени и места приземления. Двигательная установка создает тормозной импульс с целью преобразования орбиты с таким расчетом, чтобы перигейная ее часть оказалась именно в плотных слоях атмосферы. В этом случае, чем больше тормозной импульс, тем круче вход космического аппарата в плотные слои атмосферы и тем интенсивнее его торможение.

Однако интенсивность торможения должна быть ограничена перегрузками, допустимыми для экипажа и приборов, а также конструкции спускаемого аппарата. По этим соображениям крутизну входа в атмосферу необходимо создавать меньшую. Большая часть кинетической энергии спускаемого аппарата, перешедшей в тепловую при торможении в атмосфере, должна рассеиваться во внешней среде, и лишь небольшая часть ее может быть поглощена массой конструкции или воспринята теплозащитными системами аппарата. При пологих траекториях спуска в атмосфере уровень перегрузок и интенсивность нагрева ниже, однако, из-за увеличения длительности снижения возрастает общая доля тепловой энергии, подводимой к поверхности аппарата.

На характер и интенсивность взаимодействия спускаемого аппарата с воздушной средой при снижении и торможении влияют параметры атмосферы, такие, как плотность, давление, температура, длина свободного пробега молекул, скорость распространения возмущений (скорость звука), молекулярная масса и т. п. Но и эти параметры не постоянны, а испытывают колебания, зависящие от времени года и суток, от изменения солнечной активности, от климатических факторов, изменения ветра и т.д.

Огромная скорость входа спускаемого аппарата в атмосферу вызывает большие в ней возмущения. Впереди по направлению полета газ атмосферы начинает сжиматься, но не постепенно, а ударом, и возникает уплотнение — так называемая ударная волна. Последняя движется несколько впереди спускаемого аппарата при той же скорости движения. Температура во фронте ударной волны достигает нескольких тысяч Кельвинов. Потоки тепла идут во все стороны, в том числе и на спускаемый аппарат, При этом поток тепла, приходящийся на спускаемый аппарат, зависит от состава атмосферы и ее термодинамических характеристик.

При больших углах входа нарастание потока и спад его и результате резкого торможения происходит пикообразно. Получается мощный тепловой и динамический удар и быстрый унос солидного количества теплозащиты. При малых углах входа кривая нарастания теплового потока положе, а время его воздействия продолжительнее и унос покрытия меньше, но, безусловно, при этом имеется большой прогрев всей системы теплозащиты.

Тепловая энергия при торможении космического аппарата поступает в атмосферу с его поверхности двумя основными путями — за счет конвективной теплопередачи в пограничном слое и за счет излучения фронта ударной волны. При больших скоростях полета процесс конвективного переноса тепла усложняется ионизацией газа, неравновесностью пограничного слоя, а при уносе массы с поверхности обшивки (обгорание обмазки, испарение теплозащиты и т. п.) — массообменом и химическими реакциями в пограничном слое. Излучение ударной волны — лучистая теплопередача — становится существенным при скоростях полета 6–8 км/с, а при больших скоростях приобретает решающее значение.

Тепловая энергия, подведенная извне к обшивке спускаемого аппарата, частично рассеивается за счет излучений поверхности, частично поглощается или уносится (при охлаждении с уносом массы) системами теплозащиты, частично аккумулируется за счет теплоемкости конструкции спускаемого аппарата, вызывая повышение температуры силовых элементов. Полное исследование тепловых режимов в различных точках обшивки спускаемого аппарата реальной конфигурации, требующее достаточно подробного рассмотрения тепло- и массообмена вблизи охлаждаемой поверхности и изучения температурных полей в конструкции, представляет собой весьма сложную задачу. Обычно используются приближенные соотношения, позволяющие оценить интенсивность нагрева для некоторых типичных участков поверхности спускаемого аппарата. Затем эти оценки уточняются на основе экспериментальных исследований. Таким образом, создание спускаемых аппаратов для конкретных планет, имеющих атмосферу, задача трудоемкая и очень сложная, даже только в части теплозащиты, но она успешно решается в конструкторских бюро.

АППАРАТЫ ДЛЯ СПУСКА В АТМОСФЕРЕ

Посмотрим на существующие и уже применявшиеся спускаемые аппараты с точки зрения распределения тепловых потоков. Кинетическая энергия спускаемого аппарата хотя и очень большая, но легко подсчитывается. Высвобождающаяся при торможении спускаемого аппарата в атмосфере энергия только в небольшой части (1–2%) идет на его нагрев, большая же часть этой энергии нагревает окружающую воздушную среду и рассеивается в атмосфере. Практически вот на эти 1–2% от располагаемой спускаемым аппаратом энергии и надо рассчитывать создаваемую теплозащиту.

Вообще говоря, в космонавтике энергия расходуется расточительно. При запуске космического аппарата только 1–2% энергии топлива, сгоравшего в двигательной установке, идет на увеличение кинетической энергии космического аппарата. Остальная расходуется на потери при нагреве газов и истечении их в атмосферу, на перемещение и увеличение кинетической энергии первых ступеней ракеты-носителя, на повышение потенциальной энергии космического аппарата и т.д.1.

1Видимо, эти проценты в природе часто встречаются. Даже, как показал академик И. В. Петрянов-Соколов, КПД в переработке минералов на Земле составляет только 1-2%, но эти совпадения, наверное, тема другого разговора.

От угла входа в атмосферу зависит как продолжительность воздействия теплового потока, так и величина лобового сопротивления. При больших углах входа сопротивление настолько резко возрастает, что величина перегрузки достигает несколько сот g. Это было характерно для межпланетных, станций «Венера» первого поколения (до «Венеры-8» включительно). Углы входа в атмосферу у них достигали 62–65°, а величины перегрузки при этом были до 450 g. Это значит, каждый прибор, каждый элемент спускаемого аппарата становился в 450 раз тяжелее и во столько же раз больше давил на опору, где был закреплен, чем в момент установки в спускаемый аппарат в сборочном цехе.

Длительное время космический аппарат «Венера» находится в условиях невесомости на межпланетной орбите от Земли до Венеры, когда в течение четырех месяцев спускаемый аппарат не испытывает силовых нагружений. И только при встрече с атмосферой Венера «внезапно, вдруг на корпус и оболочку спускаемого аппарата наваливается огромная сила — сила сопротивления атмосферы, стремящаяся, подобно мощному прессу, смять спускаемый аппарат. При зтом он подвергается натиску одновременно двух воздействий: силы сопротивления атмосферы и мощного потока тепловой энергии.

Подобное происходит с любым спускаемым аппаратом, входящим как в состав межпланетной станции, так и космического корабля при возвращении космонавтов на Землю.

Лобовые наружные слои теплозащиты сублимируют, т.е. испаряются, и потоком воздуха уносятся, создавая светящийся след в атмосфере. Высокая температура в ударной волне ионизирует молекулы воздуха в атмосфере — возникает плазма. Плазменное покрывало охватывает большую часть спускаемого аппарата и как экраном закрывает несущийся в атмосфере спускаемый аппарат и тем самым лишает связи с космонавтами или с радиокомплексом автоматического аппарата при посадке. Причем в земных условиях ионизация образуется, как правило, на высотах 120–15 км при максимуме в интервале 80–40 км.

Формы спускаемых аппаратов. Прежде всего отметим, что спускаемые аппараты, предназначенные для планет, имеющих атмосферу, могут создаваться либо для спуска без управления — по баллистической траектории, либо для спуска с системой управления движением, способной обеспечивать совершение маневра в атмосфере. Естественно, и более совершенные спускаемые аппараты, снабженные системой управления, могут совершать также спуск по баллистической траектории.

Первые спускаемые аппараты, примененные для искусственных спутников Земли, выполнялись в форме шара. Это спускаемые аппараты кораблей-спутников, космических кораблей «Восток» и «Восход», а также биоспутников. Их спуск проходил по баллистической траектории, ничем не отличаясь от природных «спускаемых аппаратов» — метеоритов. Форма шара самая простая и широко распространена в природе. Это форма звезд, планет, небольших капелек воды и т.д.

Шаровая конструкция, кроме лобового сопротивления, не подвержена действию никаких других сил, не считая силы притяжения. Аэродинамики говорят — шар обладает нулевым качеством, т.е. подъемная сила при обтекании шара атмосферой равна нулю. Для шаровой конструкции величина перегрузки зависит от скорости полета и угла входа в атмосферу. Для искусственного спутника Земли, у которого скорого движения по орбите несколько менее 8 км/с, угол входа должен быть небольшим, порядка одного или нескольких градусов, с тем чтобы перегрузки не превышали 10 g, что очень важно для спуска с орбиты спускаемого аппарата с экипажем.

Что же требуется, чтобы при спуске космонавтов с орбиты имелись комфортабельные условия, т.е. чтобы торможение происходило с ускоренном земной тяжести (т.е. почти 10 м/с2)?

Во-первых, тормозной путь при этом должен быть длиной 3200 км. Во-вторых, если бы ничего не мешало, т.е. не считать атмосферу, то пришлось бы 800 с спускаться при включенном двигателе. А в земных условиях воздушная оболочка так плавно затормозить при баллистическом спуске не может, и торможение происходит более резким, с большими перегрузками.

Иначе говоря, для уменьшения величины перегрузки необходимо осуществлять спуск не по баллистической траектории, а с использованием подъемной силы. В этом случае необходимо применять спускаемый аппарат, обладающий аэродинамическим качеством. Шар, как уже говорилось, аэродинамическим качеством не обладает, но уже пластинка, если ее поместить в потоке воздуха наклонно, показывает наличие подъемной силы. В космонавтике использовали такую пластинку (правда, круглую в поперечном сечении и выпуклую в сторону потока), а сзади расположили отсек экипажа — получился спускаемый аппарат в форме фары.

Такая конструкция обладает аэродинамическим качеством до 0,35 или, иначе говоря, в движении при определенном наклоне передней стенки фары возникает подъемная сила, достигающая величины 35% от силы лобового сопротивления. Подъемная сила дает возможность проводить спуск по более пологой траектории, с меньшими перегрузками. Такая форма характерна для спускаемых аппаратов космических кораблей «Союз», «Меркурий», «Джемини» и «Аполлон». Правда, корабль «Меркурий» не мог воспользоваться своей формой для создания подъемной силы. Конструктивное решение корабля не позволяло этого сделать, а спуск аппарата всегда происходил по баллистической траектории.

Что же необходимо создать для осуществления наклона передней стенки фары при обтекании ее потоком воздуха?
Рис.1. Смещение центра масс спускаемого аппарата
Рис. 1. Смещение центра масс спускаемого аппарата:
1 — подъемная сила; 2 — направление полета; ЦМ — центр масс; ЦД — центр давлений; заштриховано место наиболее массивного оборудования

В принципе это можно было сделать с помощью системы ориентации. Правда, расход топлива при этом достигал бы очень больших значений: ведь надо было создать значительные управляющие моменты для компенсации моментов, возникающих под действием аэродинамических сил. И с точки зрения затрат огромных масс топлива этот путь неприемлем.

Более простое решение — смещение центра масс относительно оси симметрии. У фары в качестве основной несущей поверхности используется передняя сгонка — днище, имеющее форму сегмента сферы относительно небольшой кривизны. Боковая поверхность спускаемого аппарата выполняется либо в форме конуса, либо при сочетании конуса и части сферы. Спуск аппарата осуществляется днищем вперед. Поскольку по внешнему виду спускаемый аппарат является телом вращения, то его центр давления (результирующей силы аэродинамического воздействия) находится на оси симметрии. Так что смещенный центр масс располагают между днищем и центром давления.

Такая центровка обеспечивает устойчивое положение спускаемого аппарата в воздушном потоке (днищем вперед), а также несимметричное обтекание спускаемого аппарата. Благодаря последнему появляется подъемная сила, перпендикулярная набегающему потоку (рис. 1).

Спуск с орбиты искусственного спутника Земли может успешно осуществляться в широком диапазоне начальных условий с приемлемыми перегрузочными и тепловыми нагрузками как при баллистическом спуске, так и при спуске с использованием аэродинамического качества спускаемого аппарата. При этом широко применяется система управления движением при спуске, основанная на методе управления спускаемым аппаратом путем его программного разворота по углу крена (при постоянном угле атаки), что в процессе полета обеспечивает изменение эффективной силы — проекции подъемной силы на вертикальную плоскость. Такой метод требует достаточно малых управляющих моментов, благодаря так называемой статической нейтральности по углу крена и неизменности картины обтекания воздушным потоком в процессе управления.

Но уже при возвращении космического аппарата после полета к Луне, когда скорость его входа в земную атмосферу близка ко второй космической скорости, проблема спуска усложняется в связи с увеличением перегрузок и повышением напряженности теплового потока. Для успешного решения задачи спуска надо в этом случае очень точно выдерживать «коридор» входа в атмосферу, который определяет границы по углу входа в атмосферу. В случае больших углов возникают большие перегрузки, и, наоборот, при очень малых углах атмосфера может не «захватить» спускаемый аппарат вследствие незначительности своего сопротивления его движению.

Отметим, что границы коридора входа зависят как от аэродинамических характеристик спускаемого аппарата, так и от того, каким образом используется аэродинамическое качество аппарата на начальном участке погружения в атмосферу. Кроме того, с увеличением скорости полета уменьшается и ширина коридора входа в атмосферу, а это ведет к увеличению точности работы системы навигации и коррекции на подлетном участке траектории.

Для спускаемого аппарата с системой управления движением возвращение с Луны может решаться и иным путем. При достаточно крутом входе в атмосферу, когда угол входа больше 2°, траектория спускаемого аппарата даже при малых постоянных значениях угла атаки и небольшом коэффициенте качества (в пределах 0,2–0,3) содержит восходящие участки, т.е. возможно рикошетирование аппарата. В этом случае допустимо двойное погружение спускаемого аппарата в атмосферу (рис. 2). При подлете к Земле со второй космической скоростью при угле входа 3° спускаемый аппарат после первого погружения выходит из атмосферы на эллиптическую орбиту и затем вновь входит в атмосферу, но уже на расстоянии 10000 км от точки выхода.

Однако обеспечение точного места посадки при этом затруднительно, поскольку при отклонении скорости на 0,001 (около 8 м/с) от расчетной приводит к отклонению дальности точки вторичного входа в атмосферу на 300 км, а отклонение угла наклона траектории на 0,1° — к отклонению дальности на 180 км. Чтобы эта неопределенность уменьшилась, траектория должна иметь как можно больший угол наклона в точке вылета из атмосферы. Правда, величина этого угла ограничивается запасом аэродинамического качества спускаемого аппарата, а также допустимым пределом максимальных перегрузок (в ином случае будут более глубокие погружения в атмосферу на первом участке). На промежуточном участке полета управление аппаратом невозможно, и поэтому накопленное отклонение по дальности сможет быть скомпенсировано только на участке второго погружения в атмосферу.

Рис.2. Двойное погружение в атмосферу
Рис. 2. Двойное погружение в атмосферу:
1 — первый вход в атмосферу; 2 — выход из атмосферы; 3 — второй
вход в атмосферу; 4 — посадка; 5 — условная граница атмосферы;
6 — коридор входа

Подчеркнем, что, рассматривая возможности спускаемого аппарата при возвращении с орбиты и с лунных траекторий, мы предусматривали программное управление движением аппарата. Однако при возвращении с орбиты могут возникать и такие ситуации, когда управлять траекторией спуска с помощью аэродинамических сил станет невозможно. Например, если вдруг спускаемый аппарат не удалось сориентировать перед входом в атмосферу или, скажем, подготовить систему управления. В этих ситуациях необходимо осуществлять баллистический спуск по траектории, которая формируется без использования подъемной и боковой аэродинамических сил аппарата.

При этом выбирается траектория, которая обеспечивает значительно меньший разброс мест приземления и позволяет избежать недопустимо больших перегрузок. А большие перегрузки весьма возможны, если спускаемый аппарат, скажем, входит в атмосферу перевернутым на 180°, т.е. когда подъемная сила не выталкивает аппарат вверх, а заставляет погружаться в еще более плотные слои атмосферы и делает спуск более крутым. Однако организовать необходимый баллистический спуск довольно просто — достаточно сообщить аппарату вращение относительно оси, совпадающей с направлением полета. При таком вращении воздействие поперечных аэродинамических сил сводится к минимуму.

Теплозащитное покрытие. Как уже говорилось, почти вся энергия, сообщенная ракетой-носителем космическому аппарату, должна рассеяться в атмосфере при его торможении. Однако определенная часть этой энергии ведет к нагреву спускаемого аппарата при его движении в атмосфере. Без достаточной защиты металлическая его конструкция сгорает при входе в атмосферу и аппарат прекращает свое существование. Тепловая защита должна быть хорошим изолятором тепловой энергии, т.е. обладать малой способностью к теплопередаче и быть жаростойкой. Таким требованиям отвечают отдельные сорта искусственных материалов — пластмасс.

Спускаемый аппарат покрывают теплозащитным экраном, как правило, из этих искусственных материалов, состоящим из нескольких слоев. Причем внешний слой состоит обычно из относительно прочных пластмасс с графитовым заполнением как наиболее тугоплавким материалом, а следующий термоизоляционный слой — чаще всего из пластика со стекловолокнистым наполнением. Для уменьшения массы теплоизоляции, как правило, отдельные ее слои делают сотовыми, пористыми, но обладающими достаточно высокой прочностью.

Толщина теплового покрытия зависит от типа спускаемого аппарата и его назначения. Например, у спускаемого аппарата станции «Венера-14» унос теплозащитного покрытия при прохождении атмосферы Венеры был порядка 30–70 мм по толщине защитного экрана. Следовательно, теплозащитное покрытие должно иметь достаточно значительную толщину, чтобы сохранить металлическую конструкцию спускаемого аппарата. А это уже составляет значительный процент массы от допустимой величины для спускаемого аппарата. Так, для спускаемого аппарата корабля «Восток», имевшего массу 2460 кг, масса сферической теплозащиты составляла 800 кг.

Итак, при воздействии большой температуры теплозащитное покрытие, начиная с поверхности, сильно нагревается и затем испаряется, унося тем самым с собой избыточную тепловую энергию от спускаемого аппарата. Для снижения же массы теплозащитного покрытия его максимальная толщина приходится только на места, подверженные наибольшему воздействию теплового потока. У спускаемых аппаратов типа фары это днище, а боковые поверхности, подверженные меньшему нагреву, имеют теплозащиту незначительной толщины. Причем у отдельных спускаемых аппаратов после прохождения наибольшего участка торможения и после прекращения действия тепловых нагрузок массивный теплозащитный экран с лобовой части (с днища) сбрасывается.

Парашютная система. После окончания интенсивного аэродинамического торможения движение спускаемого аппарата становится относительно равномерным. Скорость его снижения для различных конструкций в атмосфере вблизи Земли устанавливается в диапазоне 50 — 150 м/с. Чтобы сохранить спускаемый аппарат и обеспечить безопасность экипажа, скорости при посадке должны быть значительно меньшие. Так, например, скорость при посадке на воду не должна превышать 12— 15 м/с, на сушу (на твердый грунт) — 6–9 м/с. Для сравнения отметим, что спортсмен-парашютист приземляется со скоростью 5–8 м/с. Чтобы уменьшить скорость падения спускаемого аппарата на Землю, и применяют различные парашютные системы.

Масса этих систем также составляет определенную часть массы спускаемого аппарата, и, как правило, при увеличении массы аппарата пропорционально возрастает и масса парашютной системы. Введение парашютной системы в воздушный поток и развертывание купола хотя и не является простой задачей, но она успешно решается в практической космонавтике. При относительно больших скоростях полета введение большого купола основного парашюта приводит к большим нагрузкам, которых материал парашюта может не выдержать. При этом большие нагрузки будут воздействовать и на экипаж аппарата. Конструктивно эта проблема решается с помощью системы парашютов.

Вначале вместе с отстреливаемой крышкой парашютного отсека вытаскивается вытяжной парашют с небольшой рабочей площадью купола. Этот вытяжной парашют вводит в набегающий поток воздуха купол тормозного парашюта. В результате скорость снижения спускаемого аппарата уменьшается почти вдвое, и тогда с помощью тормозного парашюта вводится основной парашют. Причем чаще всего вводится не полный купол основного парашюта, а его часть. При дальнейшем снижении скорости спускаемого аппарата шнур, с помощью которого зарифовывается основной купол, перерезается и тогда уже купол основного парашюта раскрывается полностью.

Купол основного парашюта имеет большую рабочую площадь, что позволяет снизить скорость снижения до величин, безопасных для экипажа и самого спускаемого аппарата. Однако полностью затормозить спускаемый аппарат с помощью только одного такого парашюта принципиально невозможно. Поэтому основной парашют в зависимости от массы спускаемого аппарата может быть с одним куполом или с несколькими. Иногда вместо каскада тормозного и основного парашютов применяется вначале зарифованый основной парашют, но с уменьшением скорости спуска зарифовка в один или два этапа снимается.

Заключительное торможение удобно осуществлять с использованием пороховых двигателей. Эти двигатели включаются непосредственно перед касанием земной поверхности, и они гасят скорость спуска до 2–4 м/с. Заметим, что спускаемые аппараты американских космических кораблей «Меркурий», «Джемини» и «Аполлон» были оборудованы только парашютной системой и пороховые двигатели мягкой посадки на них не применялись, поскольку эти спускаемые аппараты осуществляли посадку в океане — на воду.

СПУСКАЕМЫЙ АППАРАТ КОРАБЛЕЙ
«ВОСТОК» И «ВОСХОД»


Одним из самых первых спускаемых аппаратов, успешно возвращенных на Землю, был спускаемый аппарат советского корабля-спутника, выполненный в форме тора. Этот корабль-спутник предназначался для отработки всех элементов и этапов полета человека в космос. Его спускаемый аппарат практически не отличался от спускаемого аппарата корабля «Восток». Последний конструктивно состоял из двух основных отсеков: спускаемого аппарата и приборного отсека. Спускаемый аппарат включал в себя и кабину космонавта.

При осуществлении спуска с орбиты после проведения тормозного импульса спускаемый аппарат отделялся от приборного отсека и осуществлял посадку на Землю, в то время как приборный отсек входил в плотные слои атмосферы и прекращал там свое существование. Масса спускаемого аппарата составляла 2460 кг, его корпус имел форму шара диаметром 2,3 м и изготовлялся из алюминиевых сплавов. Снаружи весь корпус, кроме иллюминаторов, покрывался теплозащитным экраном, поверх которого был нанесен слой теплоизоляции, необходимый для нормального функционирования корабля в период орбитального полета.

В кабине космонавта располагались кресло и приборы для управления кораблем. Обеспечение нормального самочувствия и поддержание нормальной работоспособности человека в кабине космонавта обусловливались двумя основными системами: жизнеобеспечения и терморегулирования. Они поддерживали нормальный состав воздуха в кабине, поглощая выделенный космонавтом при дыхании углекислый газ и обеспечивая неизменное содержание кислорода в воздухе, а также отбирали избыток влаги из воздуха и создавали нормальные температурные условия в пределах 20–25°С. В кабине давление поддерживалось в пределах 755–775 мм рт. ст.

С целью равномерного перемешивания атмосферы в кабине, не имевшей конвективных потоков в условиях невесомости, устанавливался вентилятор. Система терморегулирования, общая для двух отсеков, была выполнена в жидкостном варианте. Для обеспечения нормальной работы оборудования, расположенного в спускаемом аппарате, там имелась аккумуляторная батарея. На пульте космонавта находилась ручка управления ориентацией космического корабля с тремя степенями свободы, а также оптическое устройство системы ориентации.

Перед разделением космический корабль ориентировался в строго заданном направлении и в расчетное время включалась двигательная установка, сообщающая тормозной импульс космическому кораблю. Двигатель развивал тягу 17,5 кН, при этом скорость уменьшалась на 150–200 м/с. Орбита становилась эллиптической с перигеем ниже 100 км над поверхностью Земли. В результате спускаемый аппарат входил в плотные слои атмосферы и тормозился.

На высоте порядка 7 км космонавт мог катапультироваться через открывшийся специальный люк, он вместе с креслом выстреливался по специальным направляющим. Спустя некоторое время над креслом раскрывался тормозной парашют, а еще через несколько десятков секунд на высоте 4 км, когда космонавт отделялся от кресла, раскрывался основной парашют космонавта; скорость приземления космонавта составляла 5–6 м/с. При этом спускаемый аппарат спускался на собственном парашюте. Можно было осуществлять посадку, и не покидая кабины, — в спускаемом аппарате, который опускался со скоростью около 10 м/с.

Применяющиеся до настоящего времени спускаемые аппараты советских искусственных спутников Земли для проведения биологических экспериментов в принципе мало чем отличаются от спускаемых аппаратов корабля «Восток», и поэтому мы не станем отдельно на них останавливаться. Отметим только, что они проходят все этапы спуска, кроме катапультирования, поскольку кресло космонавта здесь отсутствует. Внутри спускаемого аппарата размещаются различные представители животного и растительного мира, а также устанавливается аппаратура, обеспечивающая кормление животных и полив растений.

Корабли «Восход» в отличие от кораблей «Восток» были многоместными. Размещение сразу нескольких космонавтов потребовало перекомпоновать кабину космонавта. В ней были установлены три кресла с индивидуальными ложементами, т.е. они изготовлялись по размерам и с учетом особенностей тела каждого космонавта. Поскольку посадка могла осуществляться только с космонавтами в кабине спускаемого аппарата, то некатапультируемые кресла были снабжены дополнительными амортизаторами. Основные этапы спуска с орбиты были аналогичны этапам спуска для корабля «Восток». Но для большей надежности спуска с орбиты двигательная установка на этом корабле дублировалась: кроме жидкостной реактивной двигательной установки, выше ее размещен твердотопливный тормозной двигатель.

С целью уменьшения удара о земную поверхность спуск на участке парашютирования осуществлялся на двух парашютах, которые крепились не на прямую к спускаемому аппарату, а к корпусу двигателя мягкой посадки с помощью пирозамков. После приземления пирозамки срабатывали и стренги парашюта отбрасывались от спускаемого аппарата, чтобы при большом ветре парашют не смог волочить за собой по земле аппарат с космонавтами.

Включение порохового двигателя мягкой посадки производилось трубчатой штангой, опущенной ниже спускаемого аппарата примерно на 3 м. Штанга образовывалась путем сматывания с катушки пружинной ленты и ее сворачивания в трубку. При соприкосновении штанги с поверхностью Земли замыкался контакт, и включалась двигательная установка, уменьшавшая скорость снижения вдвое, доводя ее до 2–4 м/с.

СПУСКАЕМЫЕ АППАРАТЫ ДЛЯ ВОЗВРАЩЕНИЯ
ЛУННЫХ «ГЕОЛОГОВ»


Спускаемые аппараты автоматических космических аппаратов «Луна-16, -20 и -24», предназначенные для посадки на Землю после забора лунного грунта, имели форму шара диаметром 0,5 м. Эта форма не требует создания специальной системы ориентации, необходимой для спускаемого аппарата, обладающего аэродинамическим качеством. Спуск в атмосфере происходил по баллистической траектории. Главным здесь было требование ограничения по массе для спускаемого аппарата. Отсутствие же космонавта снимало препятствия, накладываемые большими перегрузками.

Посадочная ступень этих автоматических станций «Луна», представлявшая собой спускаемый аппарат для посадки на Луну, служила и стартовым устройством для космической ракеты «Луна — Земля». Последняя имела в своем составе жидкостный ракетный двигатель со сферическими баками для компонентов топлива, а также приборный отсек с четырьмя штыревыми антеннами и спускаемый аппарат, крепившийся к приборному отсеку стяжными лентами. Приборный отсек служил местом установки приборов системы управления, радиокомплекса, аккумуляторной батареи и бортовой автоматики.

После того как станция «Луна-16» с помощью грунтозаборного устройства провела бурение лунной поверхности, бур с грунтом был вложен внутрь контейнера спускаемого аппарата, после чего контейнер был загерметизирован и по окончании подготовительных операций по проверке готовности система управления по команде включила двигательную установку лунной ракеты, и та стартовала вертикально вверх. По окончании работы двигательной установки ракета имела скорость 2708 м/с, достаточную для преодоления лунного притяжения.

Полет ракеты к Земле проходил по баллистической траектории, для которой не требовалась и не предусматривалась коррекция (полет к Земле длился около 3 сут). За 3 ч до входа в атмосферу Земли спускаемый аппарат с помощью пиротехнических средств отделялся от ракеты. Вход в земную атмосферу совершался со скоростью более 11 км/с.

На этапе аэродинамического торможения спускаемый аппарат под воздействием набегающего воздушного потока разворачивался лобовой частью в направлении движения, и демпфирующее устройство устойчиво удерживало его в этом положении. Далее процесс посадки осуществлялся средствами бортовой автоматики. Вследствие большого угла входа в атмосферу Земли спускаемый аппарат испытывал перегрузку в 350 g, а его теплозащита подвергалась воздействию температуры более 10000 К. По достижении высоты 14,5 км, скорость спускаемого аппарата снижалась до 300 м/с.

Рис.3. Спускаемый аппарат станции «Луна-16» на Земле
Рис.3. Спускаемый аппарат станции
«Луна-16» на Земле


В этот момент по команде от датчика перегрузок производился отстрел крышки парашютного отсека и вводился в воздушный поток тормозной парашют. На высоте 11 км по сигналу барометрического датчика тормозной парашют отцеплялся и вводился основной парашют. Посадка осуществлялась на твердый грунт, хотя спускаемый аппарат мог спускаться и на воду. Для повышения плавучести в верхней части спускаемого аппарата после отстрела парашютной крышки были надуты два гибких баллона сжатым воздухом.

Спускаемый аппарат этой лунной станции (рис. 3) представлял собой герметичный металлический шар, наружная поверхность которого имела теплозащитное покрытие, обеспечивавшее сохранение аппарата на участке аэродинамического торможения при входе в атмосферу Земли. Теплозащитное покрытие имело переменную толщину: в лобовой части наибольшую (до 35 мм), а с противоположной стороны — всего несколько миллиметров.

Конструктивно спускаемый аппарат состоял из трех отсеков: приборного, парашютного и цилиндрического контейнера для образцов лунного грунта. В приборном отсеке размещались радиопеленгационные передатчики, аккумуляторные батареи, элементы автоматики и программное устройство. В парашютном отсеке находились (в сложенном виде) парашют, четыре антенны пеленгационных передатчиков и два эластичных баллона, используемые после посадки и их наддува для фиксации положения спускаемого аппарата, а также для создания плавучести при посадке на воду.

Этот спускаемый аппарат имел относительно малые размеры, разброс места посадки в заданном районе достигал сотен квадратных километров, и поэтому возникла проблема с поиском аппарата после приземления. В связи с чем установленные в нем пеленгационные передатчики непрерывно передавали сигналы на строго фиксированной частоте, позволяя его легко запеленговать и определить место посадки. Снизу внутри корпуса в лобовой части спускаемого аппарата устанавливался демпфер, позволивший гасить колебания аппарата при прохождении этапа аэродинамического торможения.

СПУСКАЕМЫЙ АППАРАТ КОРАБЛЯ «СОЮЗ»

Этот аппарат стал первым отечественным спускаемым аппаратом, на котором выполнялся управляемый спуск в атмосфере. Днище и потолок спускаемого аппарата имеют форму шаровых сегментов, а его боковые стенки — усеченного конуса. Космонавты располагаются в амортизированных креслах, установленных таким образом, чтобы направление действия перегрузок при выведении на орбиту и спуске было оптимальным с точки зрения их переносимости.

Иногда целесообразно часть функций по управлению спуском возложить на экипаж. В этих случаях следует учитывать, что в условиях действия перегрузок возможности человека снижаются. Труднее всего перегрузка переносится, когда она направлена от ног к голове, а легче всего, когда она действует под углами 10–15° к направлению грудь — спина и таким образом, чтобы имелась небольшая составляющая от головы к ногам. Но даже в этих условиях уже при трех-четырехкратных перегрузках объем движений в суставах рук существенно сокращается, а при перегрузках 8g и более свободными остаются только движения в лучезапястных суставах.

Это учитывается при проектировании органов управления. Для лучшей переносимости перегрузок космонавту надо сохранить мышечную собранность на участке спуска, а для этого лучше всего пользоваться рукоятками. Поэтому на кресле пилота установлена ручка управления движением корабля. Перед космонавтами находится пульт управления и оптический визир, который используется при выполнении ориентации управления сближением. Сзади кресел размещаются контейнеры с парашютными системами. Приборы и оборудование, управляемые дистанционно, находятся в нижней части отсека под креслами. Справа и слева от космонавтов на боковых стенках имеются иллюминаторы.

Снаружи на корпусе спускаемого аппарата установлено теплозащитное покрытие. Та часть, которая находится со стороны днища, выполнена в виде отдельного щита. Во время спуска на парашюте щит сбрасывается. Под сбрасываемым щитом из теплозащитного покрытия размещены четыре пороховых двигателя мягкой посадки, которые включаются по сигналу гаммалучевого высотомера.

На внешней стороне поверхности спускаемого аппарата установлена плата с разъемами электрокоммуникаций, обеспечивающих связь с другими отсеками. Перед разделением корабля разъемы автоматически отстыковываются.

После аэродинамического торможения на участке спуска барометрические датчики измеряют давление за бортом спускаемого аппарата. При атмосферном давлении, соответствующем высоте 9,6 км, запускается программно-временное устройство, формирующее команду на отстрел крышки контейнера основной парашютной системы и на ввод в действие вытяжных парашютов. Через 16,5 с после этого вырабатывается команда на ввод основного парашюта. На высоте 5,5 км основной парашют при условии нормального раскрытия должен обеспечить установившееся снижение спускаемого аппарата.

Для проверки исправности парашюта предусмотрен контроль фактической скорости снижения в течение 50 с. Если скорость превышает предельно допустимое значение, то формируется команда на отстрел основного парашюта и ввод в действие запасной парашютной системы.

Через 75 с после достижения высоты 5,5 км по команде программно-временного устройства отделяется лобовой теплозащитный экран, причем срабатывание датчиков отделения снимает блокировку на запуск двигателей мягкой посадки. Кроме того, программно-временное устройство выдает команду на перецепку парашюта на симметричную подвеску, включает гаммалучевой высотомер и взводит систему амортизации кресел. По сигналу высотомера на высоте порядка 1 м от земной поверхности включаются двигатели мягкой посадки. По специальным ударным датчикам, которые регистрируют посадку аппарата, снимается блокировка на отстрел стренг парашюта.

В качестве примера рассмотрим полет спускаемого аппарата корабля «СоюзТ-12». Перед выполнением операции посадки космический корабль был сориентирован на торможение. Над южным районом Атлантического океана включалась двигательная установка тягой 4 кН. Отработав 800 с, двигатель уменьшая орбитальную скорость на 115 м/с — орбита стала эллиптической. Над Средиземным морем на высоте 130 км космический корабль был установлен в исходное положение для разделения.

Это положение выбирается с таким расчетом, чтобы к моменту разделения продольная ось корабля была отклонена от направления полета на угол, близкий к 90°. В этом случае после разделения аэродинамические силы не могут вновь вызвать повторное сближение и соударение отсеков. После разделения только спускаемый аппарат, защищенный теплозащитным покрытием, противостоит и противоборствует высоким температурам и сопротивлению атмосферы. Другие отсеки не рассчитаны на такие суровые испытания и поэтому сгорают в атмосфере. Управляемый спуск начался над восточной частью Турции.

Во время полета с управляемым спуском космонавты отмечают, что полет похож на езду по булыжной мостовой от возникающих вибраций и тряски. Эти явления, вероятно, испытывал каждый из нас при полетах на скоростных пассажирских самолетах. В период снижения самолета при заходе па посадку, особенно при прохождении плотной облачности, в которой присутствуют турбулентные восходящие потоки воздуха, возникает вибрация. В верхних слоях атмосферы тоже всегда существуют течения вверх — вниз, дуют ветры, имеются отдельные участки пониженного давления, другие повышенного. При полете на планере с малой скоростью эти неоднородности накатываются плавно и медленно и плавно поднимают и опускают планер. При значительном увеличении скорости эти неоднородности встречаются и чередуются чаще, можно сказать, мелькают и встряхивают небольшими ударами летательный аппарат.

СПУСКАЕМЫЙ АППАРАТ КОРАБЛЯ «ЗОНД»

Спускаемый аппарат этого корабля мало отличался от спускаемого аппарата корабля «Союз», он входит в атмосферу Земли со второй космической скоростью. Поэтому его теплозащитное покрытие более мощное, а аппаратура рассчитана на осуществление полета до Луны и обратно.

Необходимо только отметить, что спускаемый аппарат корабля «Зонд-5» произвел посадку после облета Луны в атмосфере Земли по баллистической траектории в районе Индийского океана, а спускаемый аппарат корабля «Зонд-6» совершил посадку на территории Советского Союза с использованием системы управляемого спуска. Первое погружение в атмосферу было на удалении около 10000 км от места посадки. При первом погружении в атмосфере скорость спускаемого аппарата была снижена до 8 км/с, при втором — до 220 м/с. Все этапы дальнейшей посадки на поверхность Земли были аналогичны посадке спускаемого аппарата корабля «Союз».

СПУСКАЕМЫЕ АППАРАТЫ
АМЕРИКАНСКИХ КОРАБЛЕЙ


Спускаемый аппарат корабля «Меркурий». Если в автоматических космических аппаратах американские специалисты применяли для возращения на Землю спускаемые аппараты шаровой формы, которые осуществляли спуск по баллистической траектории, то для пилотируемых космических кораблей форма спускаемого аппарата для всех типов кораблей отличается от шара. Для космического корабля «Меркурий» был разработан спускаемый аппарат в форме усеченного конуса со стороны меньшего основания, соединенного с цилиндрической частью корпуса. С другой стороны конуса имелось днище в виде сферического сегмента.

Практически почти весь корабль «Меркурий» состоял из спускаемого аппарата, с которого после выведения на орбиту сбрасывалась ферма с двигателями аварийного спасения, а на участке торможения после окончания работы двигательной установки происходило ее отделение. Тормозная двигательная установка крепилась на днище спускаемого аппарата, который мог совершать спуск только по баллистической траектории вперед днищем. Днище аппарата и испытывало наибольший нагрев от фронта ударной волны при спуске. Боковые поверхности конической и цилиндрической формы подвергались меньшему нагреву.

Парашютная система корабля «Меркурий» была двухкаскадной, состоящей из основного и тормозного парашютов (последний одновременно выполнял роль и вытяжного парашюта). На днище устанавливался относительно толстый теплозащитный экран, который после ввода основного парашюта отделялся и повисал на амортизаторах. При ударе о водную поверхность амортизаторы поглощали энергию удара и тем самым уменьшали перегрузки, испытываемые спускаемым аппаратом. Необходимо отметить, что все американские спускаемые аппараты с космонавтами осуществляли посадку на воду (за исключением МТКК).

Есть еще одна особенность, которая отличает спускаемые аппараты американских кораблей. Если в наших пилотируемых кораблях атмосфера в кабине космонавтов имеет состав воздуха, напоминающий по физическим и химическим параметрам, земную атмосферу, то на кораблях «Меркурий», «Джемини» и «Аполлон» она чисто кислородная давлением в 1/3 от нормального (на уровне моря).

Спускаемый аппарат корабля «Джемини». Программа «Джемини» предназначалась для изучения проблем, связанных с длительными космическими полетами, встречей и стыковкой на орбите, выходом в открытый космос, входом спускаемого аппарата в атмосферу и спуском на Землю с использованием подъемной силы и т.д. Результаты работ, проводимых по программе «Джемини», использовались для программы «Аполлон».

«Джемини» стал первым американским кораблем, изготовленным с использованием для спускаемого аппарата (отсека экипажа) системы управляемого спуска. Форма спускаемого аппарата была выполнена в виде фары. Вход в атмосферу Земли осуществлялся днищем вперед, и благодаря смещенному центру масс относительно продольной оси полет в атмосфере происходил с постоянным углом атаки. Управляемый полет совершался за счет вращения спускаемого аппарата по углу крена. Спускаемый аппарат корабля «Джемини» двухместный, позволивший выполнять выход в открытый космос. При этом вся атмосфера кабины космонавтов, состоящая из кислорода, стравливалась в космос, а после закрытия люка восстанавливалась за счет запасенного кислорода в баллонах.

Спускаемый аппарат корабля «Аполлон». Этот аппарат, который американскими специалистами назывался отсеком экипажа, входил как составная часть в основной блок, состоящий из спускаемого аппарата и двигательного отсека. Основной же блок и лунная кабина составляли собственно корабль «Аполлон». При дальнейшем рассмотрении мы остановимся только на спускаемом аппарате, предназначенном для доставки трех космонавтов на селеноцентрическую орбиту и возвращении их на Землю.

Масса спускаемого аппарата корабля «Аполлон» составляла 5,56 т, он имел форму конуса со скругленной вершиной при диаметре основания 3,84 м, высоте 3,4 м и угле раствора конуса 66°. Самая верхняя коническая часть служила крышкой парашютного люка, отделявшейся перед развертыванием парашютов. Корпус спускаемого аппарата был стальной, собранный из слоистых панелей, соты которых набирались из нержавеющей стали и были заключены между двумя стальными листами. Донная часть аппарата выполнена в виде сферического сегмента.

Внутри спускаемого аппарата размещалась кабина экипажа, выполненная из алюминиевых сплавов и имевшая также слоистую структуру с сотовым наполнением. Соты имели различную плотность (от 0,07 до 0,114 г/см3) для обеспечения заданного расположения центра тяжести всего спускаемого аппарата. В кабине на специальных амортизаторах подвешивались три кресла для космонавтов, причем сиденья кресел могли устанавливаться под различными углами к спинке. В кабине располагались также панели пульта управления, оборудование навигационной системы и научное оборудование.

Все оборудование спускаемого аппарата размещалось с таким расчетом, чтобы центр тяжести этого отсека располагался на определенном расстоянии от продольной оси. В результате при входе спускаемого аппарата в атмосферу создавался определенный угол атаки и возникала подъемная сила. С помощью двигателей системы ориентации угол крена, а, следовательно, и подъемная сила при полете в атмосфере могли регулироваться, что позволило проводить управляемый спуск.

По программе спускаемый аппарат опускался на воду. Однако были приняты меры на тот случай, если бы он опустился на сушу. С одной стороны отсека имелись четыре специальных выступа (укрытие тонким внешним экраном по обводу конуса), которые при ударе о поверхность должны были разрушиться и этим демпфировать ударные нагрузки. Чтобы обеспечить падение отсека на выступы, стропы парашюта крепились к спускаемому аппарату несимметрично.

Вся поверхность спускаемого аппарата была защищена теплозащитными экранами, имевшими на конической части толщину 8–44 мм, а на донной — 63 мм. Экраны изготовлялись из стеклопластика с сотовым заполнением. В качестве наполнителя служил абляционный материал: фенольно-эпоксидная смола, в состав которой вводились полые стеклянные шарики.

После завершения аэродинамического торможения в атмосфере срабатывала парашютная система, которая включала в себя два тормозных, три вытяжных и три основных парашюта. Тормозные парашюты диаметром 5 м вводились в воздушный поток на высоте 7,6 км — они снижали скорость со 120 до 60 м/с. Вытяжные парашюты диаметром 3 м вводились на высоте 4,5 км, спустя несколько секунд, на высоте 4–4,2 км, — зарифованные основные парашюты, каждый из которых имел диаметр купола 26,8 м.

Развертывание основных парашютов проводилось в три этапа. При вводе в поток они были зарифованы, через 5 с частично раскрывались, спустя еще 3 с раскрывались больше и, наконец, еще через несколько секунд разворачивались полностью. В момент приводнения скорость составляла 8 м/с, а при одном отказе, т.е. при нераскрытии одного из парашютов, — 10,5 м/с (что и произошло в одном из полетов корабля «Аполлон»).

Многоразовые космические корабли. В современной космонавтике на орбитах искусственных спутников Земли используются, за редким исключением («Спейс Шаттл»), как правило, одноразовые космические аппараты, характерной особенностью которых является то, что они после выполнения космического полета не возвращаются на Землю целиком. Нормальные условия спуска обеспечиваются только для одного из отсеков — спускаемого аппарата. Проектные проработки показали, что такие корабли обладают рядом преимуществ перед кораблями, возвращаемыми в полном составе. Они проще в техническом отношении и на их создание, и осуществление запуска требуются меньшие материальные затраты.

Дело в том, что спасение всего корабля связано с решением многих дополнительных проблем. Во-первых, для обеспечения управляемого спуска в атмосфере с приемлемым температурным режимом корабль должен иметь обтекаемую форму, обладающую заданными аэродинамическими характеристиками. Это значит, что на корабле либо вообще не должно быть выступающих элементов, либо перед спуском они должны убираться во внутренний объем. Во-вторых, чтобы не допустить перегрева элементов конструкции и атмосферы жилых отсеков, необходимо всю наружную поверхность корабля закрывать теплозащитой. Это приводит к существенному увеличению общей массы.

На корабле «Спейс Шаттл» из общей массы космического корабля 111 т масса теплозащиты составляет около 9 т, а это почти 10% от общей массы. Система приземления оказывается более сложной и тяжелой. Для управления спуском требуется больше топлива. В итоге весь корабль становится сложнее и дороже и для его выведения на орбиту требуется более мощная ракета-носитель.

Необходимо отметить, что в одноразовых кораблях все оборудование, используемое для управления спуском и посадкой, а также для пребывания экипажа с момента приземления до эвакуации, размещают в спускаемом аппарате. Здесь же для обеспечения удобства работы экипажа при подготовке к спуску устанавливают средства ручного управления движением корабля на орбите и средства управления бортовыми системами. Там же, в спускаемом аппарате, предусмотрены места для укладки материалов с результатами исследований и аппаратуры, возвращаемой на Землю.

СПУСКАЕМЫЕ АППАРАТЫ АМС «ВЕНЕРА»

Спускаемые аппараты автоматических космических станций, предназначенных для исследования планеты Венера, отличаются конструктивно от спускаемых аппаратов космических кораблей. Планета Венера обладает достаточно мощной атмосферой: атмосферное давление на поверхности планеты более чем в 90 раз превышает земное. Температура на поверхности равна почти 500°С (порядка 770 К). Это и наложило свой отпечаток на создание спускаемого аппарата для Венеры.

Первые полеты к планете Венера, кроме того, планировались таким образом, чтобы спускаемые аппараты попадали примерно в центр диска планеты Венера, обращенного к Земле. Это условие необходимо было для создания радиосвязи со спускаемым аппаратом, антенна которого с относительно узкой диаграммой направленности практически смотрела в зенит при спуске. Но это же накладывает особые требования на угол входа в атмосферу планеты при подлете к ней станции, они получались около 62–65° относительно местного горизонта.

При скорости входа более 11 км/с данное обстоятельство приводило к большим перегрузкам, доходящим до 450 g. Поэтому приходилось думать о создании прочного корпуса и аппаратуры, способных выдерживать столь сильные перегрузки.

Спускаемые аппараты первых станций, совершивших полеты на Венеру, имели форму, близкую к шару. При этом датчики научных приборов могли размещаться только в верхней части спускаемого аппарата, на срезе, открывающегося после сброса крышки парашютного отсека. Первоначальное незнание точных условий на планете Венера, противоречивые результаты различных наблюдений обусловили создание относительно прочных шарообразных спускаемых аппаратов, способных выдержать лишь до 20 атм. Снаружи они защищались теплозащитной оболочкой значительной толщины.

Для уточнения параметров, свойственных атмосфере Венеры, научные приборы на первых станциях устанавливались только для определения температуры, давления, химического состава атмосферы и ее освещенности, а также высотомер для привязки данных по высоте над поверхностью планеты. К таким первым станциям-разведчикам планеты Венера следует отнести станцию «Венера-4», совершившую полет в 1967. г., «Венеру-5» и «Венеру-6» — в 1969 г., «Венеру-7» — в 1970 г. и «Венеру-8» — в 1972.

В результате изменения взглядов на физические условия, существующие на планете, по мере получения данных со спускаемых аппаратов претерпевала изменения конструкция самих спускаемых аппаратов. Прочность корпуса пришлось увеличить, чтобы он мог выдерживать наружное давление от 10 атм у «Венеры-4» до 120 атм у «Beнеры-8». Вследствие этого масса спускаемого аппарата нарастала, и если у первого из них она составляла 383 кг при общей массе станции 1106 кг, то у «Венеры-7» и «Венеры-8» масса спускаемого аппарата составила уже 500 кг при массе станции 1200 кг.

При скорости входа в атмосферу порядка 11 км/с перегрузки достигали 450 g, а температура газа во фронте ударной волны доходила до 11 000 К. При таких высоких температурах поверхность спускаемого аппарата даже не горит, а просто испаряется.

Спускаемые аппараты станций «Венера-4» — «Венера-8», по форме близкие к шару, имели диаметр около 1 м. Наружная поверхность шара, особенно нижняя лобовая его часть, снабжалась мощной теплозащитной оболочкой. Последняя задерживала также приток тепла в герметический контейнер с поверхности шара во время движения спускаемого аппарата в атмосфере Венеры.

Спускаемые аппараты отделялись от автоматических космических станций, когда те находились еще за 20–40 тыс. км до планеты Венера. Этим маневром старались обезопасить спускаемый аппарат от повреждения при входе в атмосферу. В этом случае соударений между отсеками станции и, как следствие, повреждения спускаемого аппарата не будет. Орбитальный отсек сделал свое дело — доставил спускаемый аппарат к планете и теперь может разрушиться при попадании в атмосферу Венеры, поскольку соответствующим теплозащитным покрытием не обладает.

Однако во время всего полета в течение 4 мес от Земли к Венере орбитальный отсек обеспечивал температурный режим для собственных нужд и для нужд спускаемого аппарата. Перед отделением система терморегулирования орбитального отсека захолаживала спускаемый аппарат, что необходимо было для продления его работоспособности в жарких условиях венерианской атмосферы. Орбитальный отсек обеспечивал также электроэнергией работу различных систем, черпая ее от Солнца с помощью солнечных батарей. С использованием этого отсека определялось положение станции в пространстве и проводилась необходимая коррекция полета для направления спускаемого аппарата в заданную зону попадания в районе планеты Венера.

Но, несмотря на столь важные функции, орбитальный отсек фактически являлся лишь средством для доставки спускаемого аппарата к планете Венера в работоспособном состоянии.

Конструктивно спускаемый аппарат сам состоял из двух изолированных отсеков: нижнего — приборного и верхнего — парашютного. В парашютном отсеке под крышкой, которая сбрасывалась после прохождения участка аэродинамического торможения, были расположены датчики научных приборов, антенны радиокомплекса и высотомера, а также двухкаскадная парашютная система (из тормозного и основного парашютов). Ткань парашютов сохраняла необходимую прочность при температурах до 500°С. Здесь же располагались выносные антенны радиокомплекса для последних двух станций из этой серии.

После интенсивного аэродинамического торможения при достижении скорости порядка 200–250 м/с от барометрических датчиков (при давлении 0,6 атм) формировалась команда на отстрел крышки парашютного отсека и в воздушный поток вводился тормозной парашют площадью 2,2 м2. В ходе дальнейшего снижения скорости программно-временное устройство выдавало команду на отделение тормозного парашюта и введение основного.

Площадь основного парашюта у «Венеры-4» составляла 55 м2, но после полета этой станции, спускаемый аппарат которой опускался в весьма «негостеприимной» атмосфере почти 1,5 ч, пришлось пересмотреть характеристики основного парашюта. При его вводе на высоте около 70 км работа спускаемого аппарата прекратилась уже на высоте примерно 30–40 км при достижении атмосферного уровня давлением свыше 20 атм. Причем слишком затяжное время спуска привело к сильному разогреву аппаратуры в горячей атмосфере.

Чтобы убыстрить спуск, площадь основного парашюта для спускаемых аппаратов станций «Венера-5» и «Венера-6» была уменьшена до 12 м2. В результате скорость спуска увеличилась, а сам он продолжался 51–53 мин. Эти спускаемые аппараты опустились до уровня высот с давлением 27–28 атм., а спуск на парашютах велся уже до высот 36 и 38 км. Достигли поверхности планеты с работающей аппаратурой спускаемые аппараты станций «Венера-7» и «Венера-8».

Рис.4. Спускаемый аппарат станции «Венера-8»
Рис. 4. Спускаемый аппарат станции «Венера-8»:
1 — парашют; 2 — передающая антенна; 3 — крышка парашютного отсека; 4 — радиопередатчик; 5 — демпфер; 6 — теплозащита; 7 — корпус; 8 — теплообменник

В нижнем приборном отсеке спускаемого аппарата станций «Венера» первого поколения (рис. 4) размещались бортовой радиопередатчик, программно-временное устройство, блоки автоматики, телеметрическая система, радиовысотомер, аккумуляторная батарея, система терморегулирования и научная аппаратура. В нижней части спускаемого аппарата был установлен специальный механический демпфер, служивший для повышения устойчивости движения спускаемого аппарата в атмосфере Венеры и для уменьшения амплитуды его колебаний. Чем меньше амплитуда, тем меньше боковые перегрузки.

После получения данных о действительных характеристиках атмосферы Венеры конструкторы смогли приступить к проектированию и постройке нового поколения спускаемых аппаратов, предназначенных для обширных исследований физических и химических свойств атмосферы и поверхности этой планеты. Спускаемые аппараты второго поколения были сконструированы для выполнения многих научных задач, в том числе и с целью «осмотра» поверхности планеты. Поэтому на спускаемые аппараты была установлена фототелевизионная аппаратура. Для проведения химического анализа было разработано и размещено на спускаемом аппарате грунтозаборное устройство, причем внутри спускаемого аппарата находился сложный комплекс для проведения химического анализа забранного грунта. На штангах разместили антенны, датчики определения скорости ветра, освещенности и т.д.

Большинство научной аппаратуры необходимо было разместить снаружи спускаемого аппарата, однако если его в таком виде заставить тормозиться в атмосфере, то все выступающие части с научной аппаратурой были бы уничтожены огненным смерчем при аэродинамическом торможении. Поэтому первоначальный спускаемый аппарат назвали посадочным, поверх его надели шар с теплозащитным покрытием и в результате получился новый спускаемый аппарат, но уже значительно больших размеров. Диаметр шара составил 2,4 м, причем состоял он из двух полусфер, разделяющихся при подрыве пиротехнических средств (рис. 5).

Сами станции «Венера» также претерпели изменения. Запуск автоматических межпланетных станций производился более мощной ракетой-носителем, и поэтому масса станций достигала 4,5–5 т. В связи с этим представилась возможность после отделения спускаемого аппарата спасти орбитальный отсек, т.е. саму станцию «Венера», и использовать ее в качестве ретранслятора радиосигналов, идущих от спускаемого аппарата.

Рис.5. Спускаемый аппарат станции «Венера-10»
Рис.5. Спускаемый аппарат станции «Венера-10»:
1 — парашют; 2 — научная аппаратура, работающая в атмосфере в облачном слое; 3 — телефотометр; 4 — прочный корпус; 5 — теплозащита; 6 — демпфер; 7 — посадочное устройство; 8 — теплозащитный корпус; 9 — тормозной щиток; 10 — антенна

Для этого надо было переводить ее с траектории попадания в планету на пролетную траекторию. Следовательно, заранее до полета к планете следовало отделять спускаемый аппарат, предварительно охладив его для повышения живучести в горячем дыхании атмосферы, а затем с помощью двигательной установки уже переводить станцию на траекторию пролета. Как правило, разделение спускаемого аппарата и станции проводят за двое суток до подлета.

Почему двое суток, а не одни или десять и не 27 или 59ч?

Для спускаемого аппарата чем позже разделение, тем лучше, поскольку он пользуется системой терморегулирования станции и его аппаратура проверяется на работоспособность с помощью систем станции. А для станции необходимо более раннее отделение с целью создания меньшего по энергетике импульса для уверенного перехода с попадающей траектории на траекторию пролета. Компромиссное решение и предопределило разделение за 48 ч, или двое суток, до подлета к планете. После разделения до введения парашютной системы спускаемый аппарат движется «молча», Земля не может его контролировать. Ровно двое суток как раз требуется для того, чтобы сеанс разделения проводился в течение времени, когда наземные радиосредства слежения, находившиеся на территории СССР, обращены в сторону планеты Венера. А сеанс прилета и посадки на планету спускаемого аппарата (который выбирался по времени заранее) тоже должен был приходиться на период радиовидимости с территории нашей страны. Естественно, что эти периоды радиовидимости кратны 24 ч — периоду суточного вращения Земли.

Станция «Венера» после разделения может переводиться на орбиту искусственного спутника Венеры (как это было со станциями «Венера-9» и «Венера-10») или на пролетную траекторию с дальнейшим полетом вокруг Солнца по орбите, находящейся между орбитами Земли и Венеры. Возможность использования станции в качестве ретранслятора позволила значительно уменьшить прочностные характеристики спускаемого аппарата, поскольку отпадали жесткие условия на спуск в центр диска планеты, обращенного к Земле.

Таким образом, стало возможным значительно уменьшить угол входа в атмосферу. Правда, из-за допустимых отклонений траектории от расчетной предельно малые углы входа реализовать нельзя, так как атмосфера в этом случае может и не захватить аппарат. В качестве расчетных для станций «Венера» второго поколения приняты углы входа 20–23°. Максимальные перегрузки при этом достигают уже только 170 g.

Посадку спускаемого аппарата можно стало осуществлять практически в любую точку планеты, даже на обратную ее сторону не видимую с Земли. Ведь теперь радиосигналы со спускаемого аппарата принимались на космический аппарат, пролетавший мимо планеты. Сигналы принимались и ретранслировались им через остронаправленную антенну на Землю, но могли также записываться на борту станции, а затем уже по мере надобности многократно воспроизводиться и передаваться на Землю.

СПУСКАЕМЫЕ АППАРАТЫ «ПИОНЕР-ВЕНЕРА»

Для проведения исследований в атмосфере Венеры в 1978 г. американскими специалистами была запущена станция «Пионер-Венера-2» массой 885 кг, имевшая в своем составе четыре спускаемых аппарата. Из них один имел наибольшую массу 350 кг при диаметре 1,5 м, а три остальных — массу 86 кг при диаметре 71 см. Малые аппараты предназначались для спуска в атмосфере на дневной и ночной стороне планеты, а также в сторону северного полюса Венеры.

Спускаемые аппараты были изготовлены из титана в форме шара с таким расчетом, чтобы они могли выдержать давление до 100 атм. С наружной поверхности шар защищался тепловым экраном, имеющим в лобовой части теплозащиту из фенольно-углеродного покрытия. В донной части имелось покрытие из вспененного эластомерного материала.

За 24 сут до подлета к планете, на расстоянии около 12 млн. км, отделялся от станции большой спускаемый аппарат, а еще через 5 сут с интервалами в несколько минут отделялись малые аппараты. Вход спускаемых аппаратов в атмосферу планеты происходил со скоростью, несколько большей 11 км/с. При этом торможение было аэродинамическим.

Этот участок входа и интенсивного торможения продолжался около 30 с, затем экран из теплозащитного материала сбрасывался у большого спускаемого аппарата и в течение 17 мин тот опускался на парашюте (малые спускаемые аппараты парашютов не имели). По прошествии этого времени парашют сбрасывался, чтобы ускорить прохождение атмосферы вплоть до ее поверхности. Связь с этим спускаемым аппаратом продолжалась 1 ч 19 мин вплоть до удара о поверхность.

Малые спускаемые аппараты после сброса теплозащитных экранов также вели радиопередачи до удара о поверхность Венеры. «Дневной» спускаемый аппарат (один из трех малых) после удара о поверхность еще в течение 68 мин продолжал посылать радиосигналы. Сама станция «Пионер-Венера-2» аналогично станции «Венера-4» сгорела в атмосфере планеты.

Фактически эти спускаемые аппараты, не предназначенные для осуществления мягкой посадки на планету, только выполняли роль зондов, собирающих данные об атмосфере в процессе падения. Лишь один малый аппарат, сохранивший работоспособность после удара о поверхность, фактически можно назвать спускаемым аппаратом.

Его сохранность можно объяснить большой плотностью атмосферы Венеры, способной снизить скорость падения, а, следовательно, и величину перегрузки при ударе о поверхность.

Почему же спускаемые аппараты, предназначенные для посадки на Венеру, имели только форму шара, а спуск их происходил поэтому только по баллистической траектории?

Во-первых, на Венеру опускался не человек, а научные приборы, которые способны выдерживать перегрузки 100 g и более. Во-вторых, форма шара наиболее простая и для нее не надо создавать специальной системы управления спуском. В случае же применения спускаемого аппарата с аэродинамическим качеством типа фары возникает необходимость в применении сложной системы ориентации, определяющей вход в атмосферу и направление подъемной силы, а также позволяющей регулировать подъемную силу при поворачивании аппарата по крену. Во всяком случае, главную роль в выборе формы спускаемого аппарата для посадки на Венеру, безусловно, сыграла простота и относительно малые расходы на создание такого аппарата.

далее
к началу
назад
Не садился и не планировался для посадки - Хл