Самолет на старте. Заняли места пассажиры. В окна видно уходящее вдаль летное поле, крыло и пока неподвижные воздушные винты. И вдруг они оживают. Тишина сразу обрывается ревом моторов, переходящим в ровный гул. Лопасти винтов сливаются в блестящие круги.
Машина еще некоторое время стоит на месте, как будто набирает силы, готовясь к прыжку. Старт дан, и самолет медленно начинает двигаться. Побежало в окнах поле аэродрома, быстрее, быстрее... Момента взлета ждешь - и все равно пропустишь. Только что колеса прикасались к земле, и вот она уже отдаляется, незаметно опускается вниз. Легкий толчок, самолет еще ступенькой выше, потом еще и еще. Наконец закончено восхождение по невидимой воздушной лестнице и набрана высота. Машина ложится на курс.
Тень самолета бежит по земле - ложится на зеленые пятна лесных массивов, пересекает полоски рек, ленты дорог. Скорость почти неощутима, а ведь воздушный корабль пролетает сейчас больше трехсот километров в час - восемьдесят метров в секунду!
За несколько десятков часов он может перелететь из одного конца страны в другой. Но это не предел, ибо сбылось предвидение Циолковского: за эрой аэропланов винтовых наступает эра аэропланов реактивных.
Советская ракетная техника давно уже работает над воплощением в жизнь идей Циолковского.
В 1932 году Цандер построил первый в стране ракетный двигатель на жидком топливе.
В 1933 году поднялась в воздух первая советская ракета на жидком топливе конструкции М. К. Тихонравова.
Инженеры, объединенные в группы изучения реактивного движения, вели работы по всем ведущим направлениям современного ракетостроения.
В 1940 году состоялись летные испытания планера конструкции С. П. Королева с жидкостным ракетным двигателем. Их проводил летчик-испытатель В. П. Федоров.
Достоянием истории стало и другое событие - первый в мире полет человека на ракетном самолете. Его совершил в 1942 году советский летчик Г. Я. Бахчиванджи, возвестивший этим открытие эпохи авиации будущего, эпохи больших скоростей.
Ракетный самолет стал действительностью.
Мы уже начинаем привыкать к стремительному полету новых самолетов, к их необычным формам. Когда смотришь, как мчатся стальные ласточки с отогнутыми крыльями, олицетворяя собой радостное чувство скорости, мысленно переносишься туда, в машину, которая догоняет звук. Пилот смотрит, как проносится, а не плывет земля под самолетом, и испытывает это ощущение громадной скорости, подвластной человеку.
Наступает время больших скоростей в авиации не только военной, но и транспортной. Уже сейчас появляются многомоторные реактивные воздушные корабли. Не триста, а восемьсот-девятьсот километров в час станут крейсерской скоростью гражданского самолета.
В немногих словах трудно описать то, с чем пришлось бороться создателям скоростных машин, В первую очередь надо указать на сопротивление воздушной стихии - воздух мешает движению, и тем сильнее, чем быстрее полет. Недаром появилось название «звуковой барьер» - воздух, сжимаясь, уплотняется, образуя своеобразную преграду, которую надо преодолеть.
Для этого ищут такие формы крыльев, фюзеляжа, оперения, при которых меньше сказывается вредное влияние сжимаемости воздуха. Самолету дают более мощный - реактивный - двигатель. Он помогает справиться с возросшим сопротивлением среды, штурмовать эвуковой барьер.
Как нередко бывает, нашлись маловеры, заявлявшие при встрече с трудностями: звуковой барьер непреодолим. Смотрите, самолеты рассыпаются в куски, едва начинают подходить к опасной зоне скоростей. Не выдержат машины - не хватит мощности мотора, не вынесет пилот сверхчеловеческих нагрузок, предупреждали они.
Однако современные самолеты вошли в опасную зону, почти вплотную подошли к скорости звука, и появилась не только околозвуковая авиация. В последние годы состоялись первые испытательные полеты самолетов сверхзвуковых скоростей.
Но мы будем говорить не о том, что существует сейчас, сегодня, а о завтрашнем дне, когда самолет и ракета сольются воедино, дав новую машину - крылатую управляемую ракету, прообраз межпланетного корабля.
Над проектами и опытными сверхзвуковыми самолетами работают конструкторы разных стран. Нет еще сведений о результатах, достигнутых ими. Прежде чем человек полетит на крылатой ракете, необходимо всесторонне исследовать, что творится за звуковым барьером.
Строятся модели машин. В аэродинамических трубах их продувают потоком большой скорости, изыскивая наилучшие формы, с наименьшим сопротивлением. Полетные испытания управляемых по радио моделей, броски через звуковую скорость помогают накопить материал, который использует инженер, производственник, технолог.
Уже вырисовываются контуры самолета будущего - с длинным заостренным фюзеляжем, тонкими стреловидными крыльями и оперением.
Обыкновенно идут от известного к неизвестному. «Так и мы думаем перейти от аэроплана к реактивному прибору - для завоевания солнечной системы», - говорил Циолковский. И он набрасывает план завоевания межпланетных пространств.
Безвинтовой ракетный самолет с герметической кабиной покорит стратосферу. Высота и скорость его полета ограничены только запасом топлива. Постепенно поднимаясь все выше и выше, туда, куда ранее проникали одни стратостаты да шары-зонды, человек совершит первые робкие взлеты в область больших высот. Пополнится драгоценная сокровищница опыта, окрепнут крылья ракеты, из воздушного корабля она начнет превращаться в корабль заатмосферный.
Разбежавшись по земле с помощью ускорителей, разогнавшись в разреженном воздухе больших высот, крылатая ракета совершит чудовищный прыжок в тысячи километров длиной.
Начало и конец ее пути будут лежать в атмосфере. Середина - главная, неизмеримо более длинная часть путешествия - пройдет в межпланетном пространстве.
Почта, грузы, пассажиры за час перенесутся от Балтики к берегам Тихого океана, за несколько минут - из Москвы в Ленинград.
Такие корабли будут совершать короткие визиты в межпланетную бездну - миниатюрные космические рейсы, с переходом из обычного состояния к усиленной тяжести, затем к полной ее потере и, наконец, к возвращению в привычный мир.
Корабль может двигаться с той же скоростью, с какой вращается Земля. Тогда Солнце для него станет неподвижным и наступит вечный день. Свершится и другое «чудо»: для экипажа крылатой ракеты, обогнавшей Землю, дневное светило двинется назад, восходя на западе и заходя на востоке.
Кстати, уже теперь летчику реактивного самолета, летящего со скоростью одной тысячи километров в час по параллели Москвы, покажется, что Солнце движется по небу не так, как обычно, а наоборот, с запада на восток. Он перегонит Землю, полетит «быстрее Солнца».
Когда скорости достаточно возрастут и полеты за атмосферу будут так же обычны, как теперь дальние перелеты самолетов, люди смогут начать реальную борьбу за достижение космических скоростей.
У ракетного самолета и межпланетной ракеты много общего: и самолету и ракете лететь в пустоте, где гибнет все живое. Поэтому и у самолета и у небесного корабля должна быть герметическая кабина с искусственной атмосферой, подобной той, что создается в гондолах стратостатов и кабинах высотных самолетов.
Двадцать лет назад на советских заводах построили стальной шар - гондолу стратостата, который поднялся на громадную высоту. В нем наши инженеры и техники, мастера и рабочие сумели создать стратонавтам все необходимые для работы условия.
Ради нескольких часов, которые нужно было провести в поднебесье, многие месяцы шла напряженная работа.
В историю авиации навсегда вошли стратосферные полеты советских летчиков и воздухоплавателей как непревзойденный образец мужества, героизма, настойчивости в достижении поставленной цели. Трудно в кратких словах передать эпопею этих полетов в неизведанное. Многие помнят те дни, когда весь мир ждал вестей из стратосферы, когда слово «стратостат» было у всех на устах. Успех в воздухе готовился еще на земле. Была создана специально сконструированная гондола, оборудованная всем необходимым для плавания в заоблачных высотах.
Не только стратонавтам, но и подводникам и летчикам-высотникам приходится работать в изолированных от внешнего мира помещениях. У нас уже есть опыт создания нормальных условий для жизни человека там, где жизнь невозможна, - в глубинах океана и в разреженном воздухе больших высот.
Только зная историю героических полетов в стратосферу, можно оценить сложность предстоящих работ. Нужно предусмотреть все мелочи, от которых зависит жизнь экипажа. Представьте, насколько возрастут трудности, когда речь пойдет не о часах, а о днях, проведенных за атмосферой, не о десятках, а о сотнях тысяч и миллионах километров пути, не о плавании в воздушном океане, а о полете в неведомый мир.
Надо полагать, что техника справится с такой сложной работой.
Ракетному самолету предстоит подняться выше озонового слоя, навстречу потокам ничем не ослабленных ультрафиолетовых лучей. С ними же встретится и межпланетная ракета. Поэтому иллюминаторы у них должны быть закрыты специальным стеклом. Подобно слою озона, оно защитит пассажиров от палящих лучей солнца.
На большой высоте нет воздушной брони - атмосферы, и самолету, как и ракете, грозит случайная встреча с метеором. Поэтому обоим нужна броня, о которой придется позаботиться конструкторам стратосферных и межпланетных кораблей.
Ракетный двигатель, топливо, материалы, управление, приборы, средства связи с Землей у самолета и ракеты будут во многом схожи.
О сверхзвуковых самолетах говорится уже в учебниках как о ближайшей перспективе авиационной техники. Думают, что составной самолет-ракета осуществит мечту о беспосадочном кругосветном перелете за несколько часов.
Разрабатывался проект перелета на расстояние в пять тысяч километров за три четверти часа на основе уже существующих конструкций далеко летающих ракет. Наибольшая скорость была бы три с половиной километра в секунду - почти половина первой космической скорости!
Авиация стремится выйти еще выше в стратосферу, потому что там мало сопротивление воздуха, доставляющее так много неприятностей при полете у земли.
Самолет, летающий на огромных высотах с огромными скоростями, и ракета, прорезающая верхние слои атмосферы, отчасти будут напоминать метеор. Их движение станет изучать одна и та же наука - космическая аэродинамика, в ведении которой - сверхбыстрое движение в сильно разреженном газе.
На больших скоростях происходит усиленный нагрев от трения о воздух. Чем быстрее полет, тем сильнее нагревается обшивка. У ракеты, развивавшей скорость полтора километра в секунду, она раскалялась до девятисот градусов. Здесь, пожалуй, никакая теплоизоляция не поможет. Если лететь еще быстрее, самолет сгорит. Поэтому и ищут спасения на больших высотах, где плотность воздуха ничтожно мала.
А как же быть с чудовищной, почти тысячеградусной жарой, которая, как предполагают, царит там? Как это ни странно звучит, мы не почувствовали бы эту жару, так как плотность воздуха там мала. Хотя частицы его движутся с огромными скоростями, но самих частиц значительно меньше чем у земли. Поэтому и тепло неощутимо. Лкшь с помощью приборов можно измерить температуру в очень разреженном воздухе.
Передача тепла произойдет так медленно, что самолет не успеет нагреться сколько-нибудь заметно. Только прямые солнечные лучи сыграют свою роль, но они не страшны,- от такого нагрева защититься всегда можно.
Однако надо кратко сказать и об отличии ракеты-межпланетного корабля от ракеты-самолета, вернее о том, что предстоит сделать для перехода от одного к другому.
Для топливного запаса, определяющего достижение космической скорости надо создавать составную ракету - пока нет еще в нашем распоряжении более мощных источников энергии. Лишь ракета-одиночка с атомным двигателем сможет вылететь в мировое пространство.
Межпланетный полет продолжителен, и нужно обеспечить экипаж всем необходимым для жизни в пустоте не на часы, а на дни и недели. Понадобится усовершенствовать герметическую кабину, приборы, радиоаппаратуру, позаботиться о питании, о костюмах, в которых можно выйти из ракеты, о приспособлениях для спуска на Землю и другие планеты.
Так смыкаются авиация и ракетная техника, так воздушный транспорт станет транспортом заатмосферным и воздушные дороги - небесными дорогами.